Fluorescent ligands to investigate GPCR binding properties and oligomerization.
نویسندگان
چکیده
Fluorescent ligands for GPCRs (G-protein-coupled receptors) have been synthesized for a long time but their use was usually restricted to receptor localization in the cell by fluorescent imaging microscopy. During the last two decades, the emergence of new fluorescence-based strategies and the concomitant development of fluorescent measurement apparatus have dramatically widened the use of fluorescent ligands. Among the various strategies, TR (time-resolved)-FRET (fluorescence resonance energy transfer) approaches exhibit an interesting potential to study GPCR interactions with various partners. We have derived various sets of ligands that target different GPCRs with fluorophores, which are compatible with TR-FRET strategies. Fluorescent ligands labelled either with a fluorescent donor (such as europium or terbium cryptate) or with a fluorescent acceptor (such as fluorescein, dy647 or Alexa Fluor® 647), for example, kept high affinities for their cognate receptors. These ligands turn out to be interesting tools to develop FRET-based binding assays. We also used these fluorescent ligands to analyse GPCR oligomerization by measuring FRET between ligands bound to receptor dimers. In contrast with FRET strategies, on the basis of receptor labelling, the ligand-based approach we developed is fully compatible with the study of wild-type receptors and therefore with receptors expressed in native tissues. Therefore, by using fluorescent analogues of oxytocin, we demonstrated the existence of oxytocin receptor dimers in the mammary gland of lactating rats.
منابع مشابه
Portraying G Protein-Coupled Receptors with Fluorescent Ligands
The thermodynamics of ligand-receptor interactions at the surface of living cells represents a fundamental aspect of G protein-coupled receptor (GPCR) biology; thus, its detailed elucidation constitutes a challenge for modern pharmacology. Interestingly, fluorescent ligands have been developed for a variety of GPCRs in order to monitor ligand-receptor binding in living cells. Accordingly, new m...
متن کاملReceptor Oligomerization in Family B1 of G-Protein-Coupled Receptors: Focus on BRET Investigations and the Link between GPCR Oligomerization and Binding Cooperativity
The superfamily of the seven transmembrane G-protein-coupled receptors (7TM/GPCRs) is the largest family of membrane-associated receptors. GPCRs are involved in the pathophysiology of numerous human diseases, and they constitute an estimated 30-40% of all drug targets. During the last two decades, GPCR oligomerization has been extensively studied using methods like bioluminescence resonance ene...
متن کاملBRET and Time-resolved FRET strategy to study GPCR oligomerization: from cell lines toward native tissues
The concept of oligomerization of G protein-coupled receptor (GPCR) opens new perspectives regarding physiological function regulation. The capacity of one GPCR to modify its binding and coupling properties by interacting with a second one can be at the origin of regulations unsuspected two decades ago. Although the concept is interesting, its validation at a physiological level is challenging ...
متن کاملG protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives.
Most evidence indicates that, as for family C G protein-coupled receptors (GPCRs), family A GPCRs form homo- and heteromers. Homodimers seem to be a predominant species, with potential dynamic formation of higher-order oligomers, particularly tetramers. Although monomeric GPCRs can activate G proteins, the pentameric structure constituted by one GPCR homodimer and one heterotrimeric G protein m...
متن کاملMolecular dynamics simulations and structure-based network analysis reveal structural and functional aspects of G-protein coupled receptor dimer interactions
A significant amount of experimental evidence suggests that G-protein coupled receptors (GPCRs) do not act exclusively as monomers but also form biologically relevant dimers and oligomers. However, the structural determinants, stoichiometry and functional importance of GPCR oligomerization remain topics of intense speculation. In this study we attempted to evaluate the nature and dynamics of GP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 41 1 شماره
صفحات -
تاریخ انتشار 2013